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Abstract

A new numerical method is developed for the solution of the two-dimensional, steady

Navier-Stokes equations. The method that is presented differs in significant ways from

the established numerical methods for solving the Navier-Stokes equations. The major

differences are the following: First, the focus of the present method is on satisfying flux

conservation in an integral formulation, rather than on simulating conservation laws in their

differential form. Second, the present approach provides a unified treatment of the discrete

dependent variables and their derivatives. All are treated as unknowns together to be

solved for through simulating local and global flux conservation. Third, fluxes are balanced

at cell interfaces without the use of interpolation or flux limiters. Fourth, flux conservation

is achieved through the use of discrete regions known as conservation elements and solution

elements. These elements are not the same as the standard control volumes used in the

finite-volume method. Fifth, the discrete approximation obtained on each solution element

is a functional solution of both the integral and differential form of the Navier-Stokes

equations. Finally, the method that is presented is a highly localized approach in which

the coupling to nearby cells is only in one direction for each spatial coordinate, and involves

only the immediately adjacent cells.

A general third-order formulation for the steady, compressible Navier-Stokes equa-

tions is presented, and then a Newton's method scheme is developed for the solution of

incompressible, laminar channel flow. It is shown that the Jacobian matrix is nearly block

diagonal if the nonlinear system of discrete equations is arranged appropriately and a

proper pivoting strategy is used. Numerical results are presented for Reynolds numbers of

100, 1000, and 2000. Finally, it is shown that the present scheme can resolve the developing

channel flow boundary layer using as few as six to ten cells per channel width, depending

on the Reynolds number.





A New Flux Conserving Newton's Method Scheme for the

Two-Dimensional, Steady Navier-Stokes Equations

I. Introduction

This paper is concerned with the development of a new numerical approach, called

the space-time solution element method,* for solving the Navier-Stokes equations. The

present work builds on the ideas recently presented by Chang and To 1'2 for the nmnerical

solution of conservation laws, and is part of a larger effort to build from the ground up a

new family of flux conserving numerical schemes for solving the unsteady Navier-Stokes

equations.

The numerical framework that we are proposing differs in significant ways from the

well established traditional methods for solving the Navier-Stokes equations. The major

differences are the following: First, our approach is based on satisfying flux conservation

in a space-time integral formulation. The focus is not on simulating partial differential

equations in their differential form, but rather in satisfying space-time flux conservation

of physical quantities. Second, the method we propose is a unified approach, in that it

provides a unified treatment of space and time, and a unified treatment of the discrete

dependent variables and their derivatives. All are treated as unknowns together to be

solved for through simulating local and global flux conservation. Third, fluxes are balanced

at cell interfaces without interpolation or the use of flux limiters. This (lifters flmdamentally

from a typical finite-volume method, a Fourth, local and global flux conservation is achieved

through the use of discrete regions in space-time known as conservation elements and

solution elements. These elements are not the same as the standard control vohunes

used in the finite-volume method. Fifth, the numerical approximation obtained on each

solution element is a flmctional solution which satisfies the Navier-Stokes equations in

both integral and differential form to some specified order. Finally, our method is a highly

localized approach. The coupling to nearby cells is only in one direction for each space-time

coordinate (as in a first-order method) and involves only the immediately adjacent cells.

This feature holds irrespective of the order of accuracy of a particular numerical scheme

based on our general approach.

To better illustrate these distinguishing features, let

V. h = 0 (1.1)

be one of the governing equations of fluid mechanics, where the time derivative is part of

the divergence operator, and h is a space-time flux current density vector. Using Gauss'

divergence theorem, equation (1.1) may be recast in an equivalent space-time integral form

fi. =0. (1.2)
(v)

*An abbreviation for The Method of Space-Time Conservation Element and Solution

Element.
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S(V) is the surface inclosing an arbitrary volume V in space-time, and ds is equal to da

where ff is the outward unit normal to S(V) and da is the area of a surface element of

S(V).

Equation (1.2) expresses a physical conservation law, namely, that the total flux out of

S(V) of h is equal to zero. In general, equation (1.2) implies that there is a physical quantity

which is conserved in the space-time volume V. The authors would like to emphasize that,

unlike equation (1.1), equation (1.2) remains valid even when the components of ft become

discontinuous (Indeed, equation (1.1) is derived from equation (1.2) assuming that ft is

smooth). This feature, coupled with the fact that equation (1.2) expresses a physical

conservation law which is valid for any space-time volume V, suggests that, in general,

equation (1.2) is a better starting point for numerical calculations than is equation (1.1).

The question then becomes how to best numerically simulate equation (1.2).

The most general and natural way to represent the exact solution ft by an approximate

solution _ in some discrete region V in space-time is through a Taylor series expansion.

The discrete analogue to equation (1.2) would then be

s f_._s = O. (1.3)
(u)

Note that to faithfully represent equation (1.2) in a discrete way, equation (1.3) must be

satisfied on every computational cell and every union of computational cells in a mesh

which has been used to discretize a flow field. Equation (1.3) is thus the starting point for

any numerical algorithm based on the space-time solution element method.

In this paper we are concerned with applying the ideas outlined above to the steady

Navier-Stokes equations. Our ultimate aim, as expressed above, is to develop a family of

new flux conserving numerical schemes for the unsteady Navier-Stokes equations. To lay

the foundation for this effort, the present work will concentrate on the steady equations.

The specific application that we address in this paper is incompressible, laminar chan-

nel flow. A flux conserving Newton's method scheme is developed based on the ideas

expressed above and applied to the channel flow problem. The numerical method that

we present differs in fundamental ways from any other Newton's method scheme that the

authors are aware of. Previous work for the Navier-Stokes equations has typically involved

a finite-difference formulation. References 4 - 10 are a partial listing of work by other

authors.

We begin the development of our scheme in the next section by formulating the steady,

compressible Navier-Stokes equations in the form of conservation laws. Following that,

we derive the discrete flux conservation equations for a mesh with coinciding rectangular

conservation elements and solution elements. We then use the discrete equations to develop

an implicit scheme for solving incompressible, laminar channel flow. Finally, we present

and discuss numerical results.
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II. Conservation Laws for the Navier-Stokes Equations

We consider the two-dimensional, steady, compressible Navier-Stokes equations in

dimensionless form. We assume that the ratio of specific heats 7, the viscocity p, and the

coefficient of thermal conductivity x are all constant, mid that tile fluid is a perfect gas.

Let ReL = 0_U_L denote the Reynolds number, let Pr = _ denote the Prandtl number
tt

(where Cp is the specific heat at constant pressure), and let Moo = c;_ denote the_,/_-2'
free-stream Math number (where R is a gas constant). The parameters L, U_, p_, and

T_ refer to some reference length, velocity, density, and temperature, respectively.

Let x and V denote the horizontal and vertical coordinates, respectively, of a two-

dimensional Euclidean space E2. Denoting the fluid density by p, the horizontal wqocity

component by u, the vertical velocity component by v, the static pressure by p, and the

temperature by T, the governing continuity, momentmn, and energy equations may then

be written in Cartesian coordinates as 11

o(p_) o(p,)
+ - o (2.1)

Ox Oy

o o(
-b-ix(f,__ + p- _) + N p_v - ,_) = o

O(p_ 0v - ,_)+ N(o, _ + p- ,.) = o

//2 + /)2

tt Tzx -- v "rxy + qx }

(2.2)

(2.3)

+++ ] }+. p(e+ 2 ) + p v - ur:_ - Vr_y + qv = 0 (2.4)

where

"7-27 X m

2 Ou
(2 -_) (2.5)

3ReL Ox Og

1 Ou Ov

r= _ - R e L ( --_g + -_x ) (2.6)

2 (20v Ou
rYv - 3Re L Og Ox ) (2.7)

1
= T (2.S)

MLT(7- I)
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1 OT

qx = - (3'- 1)M2ReLPr Ox (2.9)

1 OT

qY = - (7- 1)M_ReLPr Oy
(2.1o)

By applying Gauss' divergence theorem to equations (2.1) - (2.4), they may be written

in integral form as

• ds = 0 (2.11)
(v)

.g=0 (2.12)
(v)

• ds =0 (2.13)
(v)

• ds = 0 (2.14)
(v)

where S(V) is the boundary of an arbitrary region V in E2. The flux current den-

sity vectors, ft,, f_XM, hyM, and he, corresponding to the continuity, x-momentum, y-

momentum, and and energy equations, respectively, axe defined by

(pu, pv) (2.15)

f_xM de___/(pu2 + P_ T_x, puv -- r_) (2.16)

_y,,, a,=s (puv - r_, p v2+ p - ryy) (2.17)

= p(e+----_) + p u - ur_ - vr_y + q_,

.(e+ ----_--) + p v - ur_y - vvyy + q, (2.1S)

Equations (2.11) - (2.14) thus represent physical conservation laws for the conservation

of mass, momentum, and energy in an axbritraxy region V of E2.
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III. Derivation of the Discrete Flux Conservation Equations

Let E2 be discretized by a mesh with nonoverlapping rectangular regions. We assume

constant spacing Ax in the x direction and constant spacing Ay in the y direction. (See

Figure 1.) Each of the rectangular regions in the mesh will be referred to as both a

conservation element and a solution element of E2. A conservation element is a discrete

region in E2 over which the flux conservation constraints (2.11) - (2.14) will be imposed.

A solution element is a discrete region in E2 in which a local Taylor series expansion will

be employed to represent the physical solution. In general, they need not refer to the

same discrete region. (See [2] for an example where the conservation elements and solution

elements do not refer to the same discrete region.) A conservation element will be denoted

by CE(i,j) and a solution element by SE(i,j). The boundary of a conservation element

will be denoted by S(CE(i,j)). We will denote the cell centers of the conservation and

solution elements by (xi,yj), where the subscript i is an index for the x coordinates, and

the subscript j is an index for the y coordinates.

We then assume that the fluid density, u and v velocity, pressure, and temperature

can each be represented locally on a solution element by a two-dimensional Taylor series

expansion about the cell center (xi, gj) as follows:

p(x,y;i,j) dS-I p,,0(x - x,)2 + p,,,(x - x,)(y - yj) + p0,_(y- yi)2

+ p,,0(x - _,) + p0,,(v - uj) + p0,0 (3.1)

_(x,v;i,j) dej _,2,o(X- x,) _ + u,,l(_ - x,)(y - vi) + Uo,_(v- uj)_

+ u,,0(x - x/) + u0,,(y - yj) + u0,0 (3.2)

_(x,y;i,j) dej ,2,o(x - x_)_+ ,,,,(z - x,)(y - yj) + ,0,_(y- vi)_

+ V,o(X- x,) + ,,o,(_ - _j) + Voo (3.3)

p(x,y;i,j) d_j p_,0(x- x,)2+ v,,,(x - _)(_ - yj) + p0,_(y- _,)2

+ p,,o(X- x_)+ p°,,(_ - _j) + po,o (3.4)

T(z,y;i,j ) d_1= T_o(X, - :c,)2+ 7",,,(x - x,)(y-yj) + To,_(y-yj)2

+ T,,o(X-xi) + To.,(y-yj) + To.o (3.5)

For clarity the i, j subscripts have been omitted from the coefficients in the Taylor series

expansions. These coefficients are the unknowns to be solved for.
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With this notation, the Taylor series coefficients are related to the derivatives of the

discrete dependent variables at the cell center as follows:

U0, 0 _ '_

U,,o = O_/Ox

Uo,, = Oe/Oy

1 02u/Ox 2
U2, 0 =

1 02_/Oy _
U0, 2 =

u,,, = 02u/OxOy

and similarly for p,v,p, and T.

The discrete analogue to equations (2.11)- (2.14) over an arbitrary conservation ele-

ment CE(i,j) in E2 is then given by

• ds = 0 (3.6)
(CE(ij))

Js __xM-Z= 0 (3.7)
(CE(i,j))

•ds = 0 (3.8)
(CE(i,j))

• ds = 0 (3.9)
(CE(ij))

where

_M d_=/ (pu, p v) (3.10)

h_xM dej (pu2 j - P_ T_xx, fluv - T xy ) (3.11)



_ru des (p_ _ _, p_2+ p_ r_,) (3.12)

and

2

r=_ - 3neL(2Ou.lOx - @lay) (3.14)

1

_._ - n_L(&lay + a_lax) (3.15)

2

r_uy - 3ReL(2Ov_/Oy - Ou_/Ox) (3.16)

1
e = T (3.17)
- M27(7- 1) -

1
q= = - OTlax (3.1S)

(7 1)M2 ReLPr

1

qY = - (7 - 1)M_RcLPr OT/Oy (3.19)

Since the discrete flux current density vectors _M, _x_, _r_, and _E are in general dis-

continuous across the boundary of a solution element, the integrations in equations (3.6)

(3.9) are understood to be carried out on the interior of the conservation element but

immediately adjacent to the boundary S.

We are now ready to proceed with the evaluation of each of the integrals in equations

(3.6)- (3.9). To conserve space, we will only go through the details for equation (3.6). For
equations (3.7) - (3.9) we simply give the final results.

Since each S(CE(i,j)) is a simple closed curve in E2, the surface integration required

in equation (3.6) can be converted into a line integration form [1, p.14]. With cls = da if,

where 77is the outward unit normal to S(CE(i, j)) and da is the length of a surface element

in E2, we have
---+ dcf
ds = dy i- dx f, (3.20)
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and

where

_M d___f (_ _pv.,.pu_) (3.22)

and

& _J dx ;+ dy f. (3.23)

The line integration is taken to be positive in the counterclockwise sense. If we denote

the vertices of an arbritrary conservation element CE(i,j) by P, Q, R, and S as shown in

Figure 2, we have

(CE(i,j)) ~ QRSIj ~

,_s [J(Y-OQ)_+ j(Qn)_ + J(_)M + J(_)_,] (3.24)= ij

where [J(-fi-QQ)Mli,j denotes the flux of _hM through the line segment P---Qij, and similarly

for J(QR)M, J(R--S)M, and J(S---P).. We then have (omitting i,j subscripts)

J(PQ)M 4_y /;= -pvdx + p udy

[x,-_ (3.25)-pvdx + pu_ dy
j_+_ -

,,+_ Aypv__dx with y=yj +
y.,__ "

m

j(O--_) M de f /Cff
= - p v dx + p_u_dy

['J- _-_ (3.26)- pv_ dx + pu. dy
JyJ+ _-_2 " ~

pudy with x--xi -
jyj_ ___. 2
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/;J(RS)u d___I -- p v dx + p u dy

xiA" _---2_= -pvdx + pudy
j_:___ - _

L_+ pv dx with g=yj

_x Ay

2

(3.27)

where

pu =
~

PO,O UO,O

J(SP),_ d_i L P= -pvdx + p udy

L y_+a_2 -pvdx + pudy
j__ ~ ~

YJ+_-_- Ax
J-_--_ p udy with x=xi + 2

(3.28)

+ (p,,o_,o,o+po,oU,,o)(X-X,) + (po,,_,o,o+po,o,,o,,)(y-yj)

+ (po,oU_,o+p_,oUo,o+p,,o,,,,o)(X-X_)_ (3.29)

+ (po,o_,,, +p,,,_o,o + po,,U,,o+ p,,o_o,,) (x- *,)(y- yj)

+ (po,:Uo,o+Po,oUo,2+po,,Uo,,)(y--yj) 2 + H.O.T.

p_ = po,oVo,o+ (p,,o,o,o+po,o,,,o)(X-Z,) + (po,,,o,o+po,o_o,,)(y-yj)
~

+ (po,o._,o+ p_,o.o,o+ p,,o.,,o) (x - x_)_ (3.30)

+ (po,ov,,, + p,,, Vo,o+ po,,_,,o+ p,,o,o,,)(x- x_)(y- yj)

+ (po,=Vo,o+po,oVo,2+po,_Vo,,)(y-yj) 2 + H.O.T.



All polynomial terms in equations (3.29) and (3.30) that are higher than second order

have been represented through the abbreviation "H. O. T.". These terms will be neglected

throughout the remainder of the paper to be consistent with the second-order expansions

(3.1) - (3.5) (i.e., _hM is understood to be a second-order Taylor series expansion, and

similarly for h_xM, h rM, and _hE).

Carrying out the line integrations in equations (3.25) - (3.28), we obtain

z_x 3

J(PQ)M - 12 (po,oV_,o + p2,oVo,o + p,,oV,,o) (3.31)

fAy_ _ ]+/xz L--T-[p0,0v0,,+p0,2v0,0+p0,,v0,,)+ (p0,,v0,0+p0,0,0,,) + p0,0v0,0

J(QR)M -

tax 2

_/xy[T(po,oU_,o+p2,oUo,o+p,,oU,,o)

"AkY3 (P0,0 /t0,2 "JI-p0,2 It0,0 + tO0,1 /t0,1) (3.32)
12

Ax l

2 (P_,0 u0,0 + P0,0 u,,0) + P0,0 u0,0J

z_x 3

J(RS)M -
12

(Po,oV_,o+ P2,oVo,o+ Pl,oVl,o)

ray 2
-/XxL-T-(po,oVo,,+ po,,Vo,o+ po,,Vo,,) exy (p0,, ,0,0 + p0,0.0,,)

2

(3.33)

+ Po,o Vo,o]

rAx 2

+ _x_[T(Po 0

Ay 3
J(SP)M -

12
(po,o no,2 + Po,2 Uo,o + Po., Uo,_)

mx

U2.o+p_.o,_o.o+p,.oU,.o)+ -T(p,.oUo.o+po.oU_.o)

(3.34)

+ Po,oUo,oI

For clarity, all i,j subscripts have been omitted in equations (3.31)- (3.34). By virtue

of equations (3.6) and (3.24) we require that

J(PQ)_ + J(QR)_ + J(RS)M + J(SP)_ =- 0 (3.35)

which simply says that the total flux of _M out of S(CE(i,j)) is equal to zero. Applying

this condition to equations (3.31)- (3.34), we obtain the mass flux conservation constraint

p,,oUo,o + Po,oU,,o + Po,,Vo,o + Po,oVo,l = O. (3.36)
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Imposing this condition, weobtain from equations (3.31) - (3.34) the following expressions
for the normalized massflux acrossthe boundariesof the solution element SE(i,j):

J(PQ)M

mx

/_x 2

12 (Po,o v2,o + P2,o vo,o + P_,o Vl,0)

iy 2

+ --_--(Po,o Vo,_ + Po,_ Vo,o + po,
Vo,,) Ay' - --5-(p,,oUo,o + po,oU,,o) + po,oVo,o

(3.37)

J(QR).

Ay

Ay 2
- 12 (po,o Uo,_ + po,2 Uo,o + Po,_ Uo,_)

A2_ 2 .

+ --_-(po,o U:,o+ p_,oUo,o+ p,,o U,,o)
/_x

T (p,,o,,o,o+ po,o_,,,o) q- Po,o 12o, o

(3.3s)

J(RS)M /Xz 2
Ax 12 (Po,oV_,o + P2,o Vo,o + P_,o V,,o)

+--£-(po,o,,o,_+po,_Vo,o+po,,Vo,,)+ (p,,o,,o,o+ po,oU,,o)+ Po,o Vo, o

(3.39)

J(SP),

Ay

Ay 2 •

- _-(po,o Uo,_+ po,_Uo,o+ po,, _o,,)

mx 2 . /_x

+--((pooU2o+,2o_,oo+p, oU,o) + -_ (p,o,,oo+poo,,,o) PO,O ?-'tO, O

(3.40)

Note that with these expressions for J(PQ)M, J(QR),, J(RS)M, and J(SP)u ,

condition (3.35) is satisfied exactly.

The mathematical procedure required to obtain the discrete flux conservation equa-

tions corresponding to equations (3.7) - (3.9) is exactly analogous to that given above for

equation (3.6).

Corresponding to equation (3.7), we obtain the z-momentum flux conservation con-

straint,

po,o(U_,oUo,o+ Uo,_Vo,o) + p_,o 1 [(2uo,2+v, ) + 2(4 v, )] = 0 (3.41)
R_L " 5 U_,o- ,,

11



and the following expressions for the normalized flux of .hx. across the boundaries of

SE(i,j):

J(PQ)x.

ix
(3.42)

12 U2,oPo,oVo,o+ U,,o(P,,oVo,o+Po,oV,,o)+ _ Uo,2Po,oVo,o+ uo,,(po,,Vo,o+Po,oVo,_)

Ay[ 1 (2Uo,2 + v,,,)] 1 J(PQ)_+ -_- poo,ooUo,, ReL Re_(u°' + V,,o) + Uo,o Ax

J(QR)x_

Ay

_'Y_ [ ]12 Uo,_ Po,o Uo,o + Uo., (Po,_ Uo,o + Po,o Uo,, ) + Po,_

Ax2[+ ---if- U_.o po,o Uo,o +

1 (2 uo,, + vl,,)]Ax [Po,o Uo,_ ReL+ -_- Vo,o

1

u,,o (Pl,o Uo,o + Po,o Ul,o) + P2,o]

2

+ Po,o 3ReL(2U,,o -- vo,,) -- Uo,o

(3.43)

J(QR).

Ay

m

J(RS)xM

./_X
(3.44)

Ay 2 r

[Uo,_ Po,o + (Po,1 Vo,o +Po,o Vo,,Ax2[ '_2'OpO'OvO'O'3L_'_l'o(pl'ovo'O'q-pO'Ovl'O)112 + ---4- Vo,o Uo,, )]

k

[ ] J(Rs).Ay 1 (2Uo,_ +v,,,) 1 (uo., +V,,o) -- Uo.o
2 Po,o Vo,o Uo,1 ReL ReL Ax

12



J(SP)xM

Ay

12 Uo,_ Po,o Uo,o + Uo,, (po,_ Uo,o + Po,o Uo,_) + po,_

+---£- _,opo,o_o,o+ _,,o(p,,o_o,o+po,o_,,o) + p_,o

zx_[ 1 (2Uo,_+v,,,) + po,o (2_,o-_o,,)2 po.oVo,oUo,, ReL 3R%
UO,O

(3.45)

J(SP)M

Ay

The normalized mass flux expressions (3.37) - (3.40) have been used to simplify equa-

tions (3.42) - (3.45).

Corresponding to equation (3.8), we obtain the y-momentum flux conservation con-

straint,

2 (4v0,, )] _ 0 (3.46)1 [(2,,_,o+U,,,) + 5 -_"'P0,o (Vl,o Uo,o + Vo,, Vo,o) + Po,, ReL

and the following expressions for the normalized flux of hvM across the boundaries of

SE(i,j):

J(PQ)vM _ (3.47)
Az

Axe[ ]12 V_,o Po,o Vo,o + V,,o (P,,o Vo,o + Po,o V_,o) + P_,o

+--V- Vo,2po,oVo,o+ Vo,,(po,,_o,o+po,oVo,,)+po,2

]/xy[ 1 (2_,o + _,,,_) + Vo,o (2_o,,- _,_,o)+ _o,o2 Po,o Uo,o vl,O ReL 3ReL Ax

J(PQ)M

J(QR).M

Ay

] I12 Vo,_ po,o Uo,o + Vo,, (po,o Uo,_+po,, Uo,o) + _ V_,o po,o Uo,o + v_,

Ax[ 1 (2V_,o+,, ,) ] 1 (Uo,,+V,,o)2 Po,o Uo,o Vl,o ReL ' Rer

(3.48)

o(Po,oU,,o+p,,oUo,o)]

J(QR).

- Vo,o Ay

13



J(RS)rM

Ax

12 V2,o po,o v.,o + V_,o (p_,o Vo,o + Po,o V_,o) + P_.o

Ay 2
[Vo,_ Po,o + (Po,, Vo,o

]+
Vo,o Vo,, "b/90,0 Vo,,) + Po,2j

(3.49)

[ ] 2 J(Rs) Ay 1 (2v_.0 +u,,,) + Po,o (2Vo,, - u,.0) - Vo,o
+ _ Po,o Uo,o Vl,o ReL 3ReL Ax

J(SP)yM

Ay
(3.50)

i2 .o,_po,oUo.o+ Vo,l(po,oUo,,+po,,Uo,o)+ --T- ,-,.,opo,oUo,o+ V,,o(po,oU,,o+p,,oUo,o)

Ax[ 1 (2v2,o+u,,,)] 1 J(SP)M+ _ Po,o uo,ov_,o ReL ReL (uo,_ + v,,o) + Vo,o Ay

Corresponding to equation (3.9), we obtain the energy flux conservation constraint,

Po,o(U,,o+Vo,_) +
1

MLT(7 - 1) po,o(T,,oUo,o + To,, Vo,o)

1 [R_ V,,o(V,,o+.o,,) + _o,,(_,,o+_o,,) + _[_,,o(2_,,o-Vo,,) + .o,,(2_o,,
2

(3'- 1)MLReLPr (T_,o + To.s) =-- 0 (3.51)

and the following expressions for the normalized flux of .hE across the boundaries of

SE(i,j):
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J(.PQ)r
- (3.52)

Ax

Ax_{12 Po,oVo,o(

2 2
Ul, o -k- Vl, o

2
+ Uo,o U2,o -[- Vo,o V_,o) + (p,,oVo,o+ po,o.,,o) (,,,,o_o,o+ ,,,o _o,o)

+
Mi'y(' 7 - I)

[Tl,o po,o Vl,o + Vo,o(T:,opo,o+ T,,op,,o)] + (V_,opo,o+ V,,op,,o + Vo,op_,o)

3ReL
[V2,o (2 Vo,t -- u 1,o) + 2V,,o(_,,,-U_,o)]

Re/;
- --h,:,o(_,,o+_,o,,) + _,,,o(2V:,o+_,,,)]}

+
t 2Ay 2 f u 2 + Vo,l

--$-_po,o Vo,o( °' 2 + Uo,o Uo,2 -F Vo,o Vo,2) + (po,,Vo,o+Po,oVo,,)(Uo,oUo,, +Vo,oVo,,)

+
M27(_y- I)

[To,=po,oVo,o + To,,(po,,_o,o+po,oVo,,)]+ (Vo,_po,o+ Vo,,po,, + Vo,opo,_)

1 2

- L-RT [_'°'_ (v''°+u°'') + Uo,, (2Uo,_+v,,,)] 3ReL
[Yo,2 (2VO,l--U,,o) + vo,,(4Vo,2-u,,,)]}

Ay{2 po,oUo,o(ut,oUo,o+v,,oVo,o)+ (U,,oPo,o+P,,oUo,o)+ ML'7( 7 - 1)

2 [U,,o(2U,,o-Vo,,)+ Uo,o(4U2,o-V,,,)]
3ReL

1 [V_,o(V_,o+Uo,_)+ Vo,o(2V2,o+ul,_)]
ReL

_ 2 T_,o}
(7 - 1)M2 ReL Pr

Tl,o po,o Uo,o

1[Re_ Uo,o(V,,o + Uo,,) + _o,o (2 _o,,- ul,O)] + Vo,oPo,o --
(7 - 1)M_ReLPr

Y0,1

u _ 2
__ 0,0 Vo,o

2

1
+

MLT(7- I)
To,o)

J(PQ).

Ax

15



J(QR)_
_y

(3.53)

Ay2f u2 _[_ 2

12 _.Po'°U°'°( o,, v°" +u.,ouo, +Vo,oVo,2) + (po,,Uo,o+Po, oUo,i)(Uo, Uo,o+Vo,,Vo,o)2 2 l

1

+ MLT(7_l)[To,,Po,oUo,, + Uo,o(To,_po,o+To,,po,,)] + (Uo,_po,o+Uo,_po,_+Uo,opo,2)

2 1
b.,. (2U,,o-Vo,,) + 2uo,, (u,,,-Vo,_)]- --

3ReL ReL
[.o. (V,,o+.o,,) + .o,, (2.o,.+v,,,)]}

Ax2 [. 2 V2

+ _y_ipo,o Uo,o( _.°+ ',°2
-F Uo,o U2,o -F Vo,o v2,o) + (p,,oUo,o+ po,oU,,o)(Uo,oU,,o+ Vo,oV,,o)

1
+ [T_,opo,o Uo,o + Tl,o (p,,o Uo,o + po,o U,,o)] + (U_,opo,o + U,,oP,,o + Uo,oP_,o)

M_7("/- 1)

2 1
[U2,o(2Ul,o-Vo,,) + Ul,o(4u2,o-v,,_)] - --

3ReL ReL
[V_,o(V,,o+_,o,,) + .,,o (2V_,o+U,,_)]}

_Xx{2 po,oUo,o(U,,oUo,o+V,,oVo,o)+ (U,,opo,o+p,,oUo,o)+
1

M_7(7 - 1) T,,opo,oUo,o

2 [u,,o(2U,,o-Vo,,)+ Uo,o(4U_,o-v,,,)l3ReL

1 [V_,o(V_,o+Uo,_)+ Vo,o(2V2,o+U_,_)]
ReL

_ 2 T_,o}
(7- 1)MLReLPr

[ ] 11 2 (2 - Vo,x) + Po,o (7- 1)M2ReL PrT_°RCL V°'° (vl'O + uO'l) + 3U°'° U"° U°'° -- '

2 1)2
UO,O -Jr- 0,0

2
1 To,o) J(QR)_+ M£_(_- 1) Ay

16



J(RS)E _ (3.54)
/_X

2 V2
Ul,0 "_ 1,0

2
-F Uo,o U2,o q- Vo,o V2,o) + (p,,oVo,o+po,oV,,o)(,,,,o,,o,o+V,,oVo,o)

[T,,opo,o,,,o + Vo,o(T_,opo,o+T,,op,,o)]+ (_,opo,o +V,,oV,,o+Vo,op_,o)

Ax 2
_po,o Vo,o (

12 k

1
+

MLT(7- 1)

2
G o(2Vo,-_lo)

3ReL
+ 2.,,o (v,,1-u_ o)l

1
[u_o(,, o+_o,) + _ o(2_o+_,,)1_

Re L ' ,

+
1 2Ay 2 f u 2 + Vo,_

-U/..o,o.o,o (°' 2 -}- Uo,o Uo,2 -F Vo,o Vo,2) + (po,,,,o,o+po,o,,o,,)(,,o,o,,o,,+,,o,o,,o,,)

1
+ [To,_po,oVo,o + To,,(po,,,,o,o+po,oVo,,)] + (Vo,_po,o+,'o,,Po,,+"o,opo,_)

M£7(7- 1)

1 [Uo,_(v,,o+Uo,,) + Uo,,(2uo,2+v,,,)] 2 [Vo,=(2Vo, -u ,o) + Vo,(4Vo,2-u,,,)]}-- -- 1 l ,

Rer 3ReL

+--_-{po,oUo,o(U_,oUo,o+V,,oVo,o) + (U,,opo,o+p,,oUo,o) + M£7(7- 1)
Yl,0 PO,0 UO,O

2 [ (2u, Vo,,) + uo, (4U=,o v,, )]3R¢_ Ul,o ,o- o - ,

1[ ]R_L V,,o(_,,o+ Uo,) + Vo,o(2_. + _,,,) 2 G,o}
(7- 1)M2 ReL Pr

11 [ 2 (2 u,,o) + Vo,oPo,o- 2 To,ReL Uo,o(Vl,o+Uo,,) + gVo,o Vo,,-- (7-1)M_ReLPr '

u + 2 1 ) J(RS)
0,0 V0,0 M

17



J(SP)E
- (3.55)

Ay

2 ,02'_:2 po.oUo,o(u°" +2 o,1+ Uo,o_o,_+ _o,o,,o,,)+ (po,,Uo,o+ po,oUo,,)(Uo,,Uo.o+ Vo,,Vo.o)
1

+

2

3ReL[Uo.,(2U,.o-Vo.t) + 2Uo., (u,.,-Vo.,)]

[To,,po,oUo,,+ _o,o(To,,po.o+To,,po.,)]+ (Uo,,po,o+_o,,Vo,,+Uo,opo,,)

: }ReL[Vo.,(V,,o+Uo.,)+ _o.,(2_o.,+,,.,)]

+

+

3ReL

A2- { (U_,o+ ,,__- po,oUo,o 2 ,,o+,_o,oU,,o+Vo,oV,,o)+ (p,,oUo,o+po,o_,.o)(Uo,oU,,o+Vo,oV,,o)
z

M27(../_z)[T2,opo,oUo,o + T,,o(P,,oUo.o+po,oU,,o)] + (U2,oPo,o+U,,op,,o+Uo,op2,o)

2 [U_.o(2_,.o-_o.,)+ _,.o(4_,.o-_,._)]-:----[,,.o(_,.o+_o.,)+ _,.o(2_,.o+_,.,)]}
ReL

+--_- po,o_,o,o(U,,oUo,o+V,,o,,o,o)+ (_,,opo,o+p,,o_o,o)+

2 [u,,o(2U,,o-Vo,,)+ Uo,o(4U2,o-V,,,)]3ReL

n_ V,.o(V,.o+,_o.,)+ Vo.o(2V,.o+U,.,) -

Tl,o po,o Uo,o

2

(7- 1)M_ReL PrT_'°}

- Re[1 [Vo,0 (v,,0 + uo,,) 12-u (2u,,o-) + Po,o (7- 1)MLReL PrT'°
"4- 3 o,0 Vo, t tto,0 --

+ (u_o,o + v2o,o 1 J(SP)M+ M27(7 - 1) To,o ) _yy

With these expressions for the flux of h_xM, h_rM, and _E across a cell boundary, the

following conditions are satisfied on every solution element.

J(PQ)xM + J(QR)xM + J(RS)xM + J(SP)xM =-0 (3.56)

J(PQ)YM + J(QR)rM + J(RS)rM + J(SP)r_,, = 0 (3.57)

J(PQ)E + J(QR)_ + J(RS)E + J(SP)_ = 0 (3.58)

18



Before concluding this section, one final comment is required. For compressible flows,

it will be necessary to assume an equation of state in order to close the system of equations

(2.11)- (2.14) and their discrete counterpart (3.6)- (3.9). Since we have assumed that the

fluid is a perfect gas, we may take (using dimensional quantities)

p = p RT* (3.59)

and its discrete analogue

p* = p* RT*. (3.60)

In dimensionless form, we then have

1

p - 7M_p____ =

1[.7M2 po,oTo,o + (p,,oTo,o+po,oT_,o)(X-Xi) + (po,,To.o+po,oTo,,)(y-yj)

+ (po,oT,,o + p_,oTo,o+ p,,oT,,o)(x - x_)_ (3.61)

+ (po.oT,., +p,,,To.o+po,,Tl.o+p,,oTo.,)(x-xi)(y-yj)

so that

-F (po,2To,o-t-po,oTo,2 +Po,,To,,)(Y-Yj) 2]

def 1

po,o -- 7u2Po,oTo,o
(3.62)

P0, 1

def 1

.ym_
(po,,To,o+po,oTo,,) (3.63)

PI,O

aeI 1
(p,,oTo,o + po,oT_,o) (3.64)

d_f 1

Po,2 - .,/M2 (Po,_To,o + po,oTo,_ + Po,, To,,)
(3.65)

(po,oT_,, +pa,_To,o+Po,,T_,o+P_,oTo,,) (3.66)

def 1

P2,o -- _M 2 (Po,oT2,o + p2,oTo,o + p,,oT,,o).
(3.67)
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IV. Application to Incompressible Channel Flows

Our formulation thus far has been for the compressible Navier-Stokes equations. Ap-

plication to the incompressible equations can be done very simply as a special case.

When the density is constant, the gradient terms Po,_,Pl,o, Po.2,pl,1, and p,.0 in the

Taylor series expansion (3.1) are all zero, and the constant term P0,0 may be set equal to

one. Equations (3.31) - (3.58) then apply to incompressible flow, and equations (3.59) -

(3.67) are no longer applicable.

Consider the channel geometry and mesh shown in Figure 3. On each solution element

SE(i,j), there are 4 unknown discrete variables, u_,_v,p, and T, each with 6 unknown

coefficients, for a total of 24 unknowns per cell. However, the mixed coefficient terms P_,t

and TI., do not appear in any of the discrete equations (3.37) - (3.55). We will assume

that p,,, = T,,x = 0 as a result. In addition, the energy equation decouples from the

continuity and momentum equations, so that the 17 unknowns for the two components of

velocity and pressure may be solved for independently of the five remaining unknowns for

the temperature.

Let Nj denote the number of solution elements from the lower wall to the upper wall,

and let Ni denote the number of solution elements in the downstream direction. Then

the total number of unknowns for the velocity and pressure is 17NiNj. We thus require

17NiNj conditions to close the system.

The flux conservation constraints (3.36), (3.41), and (3.46), which ensure local flux

conservation on each cell, provide the starting point of the present formulation. For in-

compressible flow, these become

0 = 0 (4.1)[u,. +

Ul,o tto,o "4- tto, l Oo,o "4- Pl,o
ReL 2 (4 U2.o )1] i,j[(2u0., +v_.,) + 5 -v,., = 0 (4.2)

[ 1 2 (4 u_, )]] i,jV,,oUo,o + vo,,vo,o + Po,, Rer [(2v2,°+u''') + 5 v0,_-- , = 0 (4.3)

for j = 1, ..., Nj and i = 1, ..., Ni, for a total of 3NiNj conditions.

To ensure global flux conservation, mass and momentum fluxes must be balanced at

cell interfaces. Consider the vertical interface between SE(i,j) and SE(i + 1,j), as shown

in Figure 3. Using the cell orientation PQRS previously introduced, the mass flux leaving

SE(i,j) through the vertical interface is given by [J(SP)M]_,j. On the other hand, the

mass flux leaving SE(i + 1,j) through this same interface is given by [J(QR)M]i+Ij (and
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similarly for the momentum fluxes). Conservation of mass (and momentum) requires that

the sum of the two be zero. Balancing fluxes across each vertical interface in the mesh, we

thus require that

J(_-P)*']Av
i,j

Ay ] i,j

[-]J(sP)_,
Ay

i,j

+ [J(O-_m_,
Ay i+_,j

i+_,j

J(QR)yMAy
i+ l,j

+

= 0 (4.4)

= 0 (4.6)

for j = 1, ..., Nj and i = 1, ..., Ni - 1, for a total of 3Nj(Ni - 1) = 3NiNj - 3Nj conditions.

Similarly, the fluxes through the horizontal interface between SE(i,j) and SE(i,j + 1)

must also balance. We thus require that

S(_QQ)_]Ax
i,j

FJ(_Q)xM]ax
i,j

J(PO)_,_Ax
i,j

+ ' Ax = 0
[ i,j+l

(4.7)

+
_ J_xm

]
| = 0 (4.8)

Ax j i5+1

+
:z(_--_)y.,

Ax

i,j+l

= 0 (4.9)

for j = 1, ..., Nj - 1 and i = 1, ..., N;, for a total of 3Ni(Nj - 1) = 3NiNj - 3N_ conditions.

Equations (4.1) - (4.9) thus represent a total of 9NiNj - 3Ni - 3Nj conditions.

In addition to the above requirements, there are discrete boundary conditions that

must be satisfied. For each solution element along a wall boundary, we must require as

a minimum that there be no mass flux through the wall. This can be accomplished by

setting the integrated mass flux at the wall to zero, or by setting the v velocity component

identically to zero on the wall boundary. The second approach requires three conditions,

whereas the first approach requires only one. In this paper, we use the first approach.

Note that the zero mass flux condition takes the place of a wall boundary condition for

the v velocity component. For the u velocity, we simply set u = 0 at the midpoint of the

wall face of each cell. This leads to the following 4Ni conditions:
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Ay 2 Ay Uo,o] i,I--_uo._ 2 Uo,_ +
= 0 (4.10)

[ax_ Ay2 a_ ]12 v_,0 + _ v0,_ 2 vo,_ + Vo,0 i,1
= 0 (4.11)

Ay Ay u0,0] i,Ni-y-u0,2 + _ u0,, + = 0 (4.12)

[_x2 z_ _ A_ v0,0],,N_12 v_,0 + _ Vo,2 + _ v0,_ + = 0

Boundary conditions must also be specified at the inlet and exit.

boundary, we specify plug flow inlet conditions:

(4.13)

At the upstream

U_,o U,,o + Uo,o = [ui]i4 2 1,j
(4.14)

[zXx_ /x_ ] =04 V_,o - _V_,o + Vo,o 1,j

Downstream, we specify the pressure:

(4.15)

Po, o] Ni,j Pe. (4.16)

The total number of conditions is then increased to 9 NiNj + Ni.

Equations (4.1) - (4.16) are the minimal conditions that must be satisfied and are the

starting point of our numerical formulation. Note that conditions (4.1) - (4.9) are integral

relationships, and that these conditions ensure that fluxes of mass and momentum are

conserved on every cell and every union of cells in the mesh. Having ensured that these

fundamental requirements are satisfied, we may now turn to the differential form of the

discrete equations to introduce additional conditions to close the system. We may thus

require that

V.(u,v) = V..hM - 0 (4.17)

¢'(u:+ p- r_, _..0- r_,) = _..L_, - 0 (4.18)

V.(uv - r_y, v2+ P - ryy) = _'_r_ - 0 (4.19)

on each solution element. (These relationships are already satisfied at the cell center by

virtue of the flux conservation constraints (4.1) - (4.3), but only to first order throughout

the rest of the solution element.) This leads to the following 6NiNj conditions:
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(4.20)

(4.21)

2(2Uo,oU2.o+ Ul,o + p2.o) + u_,_Vo.o + v_.,Uo,o + u_.oVo., + uo.,Vt,o i,j

[ ]_-oU°'°V°'2 4- V°'°It°'2 4- V°'t U°'l 4- 1t1'1U°'° 4- ltl'°lt°'l i,j

= 0 (4.22)

(4.23)

2 ] = 0 (4.24)2(2v0,0v0,2 + vo, t + Po,2) + ut,,Vo,o + v,,_Uo,o + U],oV0., + u0,,V,.o i,j

u0,ov2,0 + Vo,oU2,0 + V_,oU,,o + v,,_ v0.0 + V_,oVo,,] = 0 (4.25)i,j

The total number of conditions is then increased to 15 NiNj + Ni. If we assume that

p2,o = 0 in view of the fact that channel flow is dominated by gradients in the cross-flow

direction, then the total number of conditions required is reduced to 16 NiNj. We thus

need NiN3 - N, = N_ (Nj - 1) conditions to close the system. Since Ni (Nj - 1) is

the number of horizontal cell interfaces in the mesh, this suggests imposing a condition at

each horizontal cell interface. An obvious choice would be to require that the u velocity

component be continuous in the cross-stream direction. We then have as our final condition

[ Ay2 -_ uo,0] (4.26)lAY _ Ay °]i,j+l t---4-- Uo._ + Uo,, +[--'-_- uo.2 2 Uo,_ + Uo, = i,j

for j = 1,..., N) - 1 and i = 1, ..., Ni.

We now summarize the present implicit scheme. Using (4.1), (4.20), and (4.21) to

eliminate v0,_, vt,_, and u_._, and dropping the P_,0 term, there are 13 unknowns per cell,

and the Taylor series expansions become

u_(x,y;i,j) d&! U2,o(X -- xi) 2 -- 2v0._(x -- xi)(y-- Yj) + Uo.2(y -- yj)2

+ ui,o(x - xi) + Uo,,(y - yj) + Uo.o (4.27)

v(x,y;i,j) d_=l ,,,,o(Z- x,)_ - 2U2,o(Z- z,)(y - yj) + ,,ody - yj)_

+ _,,o(X- x,)- _,,o(_- yj) + 0o,o (4.28)

p(x,y;i,j) a_=l Po,_(Y - yj)2 + p,,o(X - xi) +p0,,(Y - Yj) 4-Po,o (4.29)
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Equations (4.1) - (4.3), which are the flux conservation constraints corresponding to

equations (3.6)-(3.8), become

u_,o + vo,_]i,i = 0 (4.30)

Ul,oUo,o + Uo,tVo,o q- Pl,o 2 ] = 0 (4.31)ReL (u,,o + uo,_) i,j

[ 2 ] = 0 (4.32)V,,o Uo,o - u,,o Vo,o + po,, ReL (V_,o + Vo,_) ij

Equations (4.4)- (4.6), which are streamwise interface conditions, are given by

Ay
+

i,j
Ay

i+ 1 ,j

ay Ax 2 Ax ]1----_-Uo,=+ TU=,o + --_-Ul,° + uo,o
i,j

lAY2 u Ax2
2 U_,o + Uo,o

i+ 1 ,j

= 0

(4.33)

J(3-P)xM

i+l,j

(4.34)

Ay2 " Ax2 "2

--_-(2Uo,2Uo,o + u2, + Po,2) + --_--( u,,oUo,o + u2,,o)

2 2
AX[vo,oUo,l - Uo,oUl,o (uo,_-U2,o)] + Po,o

2 ReL ReL 2]lZl, o -_- Uo, o

i,j

lay Ax 2 ._ 2 2

L-i_-(2uo,Uoo+ Uo,+ po,) + -y-(2_=o_oo+ ulo)

Ax 2
+ --x-[Vo,oUo,1- Uo,oU,,o

ReL
(_,o,_- U_,o)]+ po,o- 2 ]-W---U_,o -{- u 2

./.{,e. L 0,0

i+l,j

= 0
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[J(SP)YM]Ay -t- [J(QR)yMAy -- (4.35)
i,j i+l,j

Ay Ax 2 .

-T_-(vo,2Uo,o+ Uo,2Vo,o- u,,oUo,,) + -T-(V2,oUo,o+ U2,oVo,o+ V,,oU,,o)

Ax .u
2

(,=,o- vo,2)l 1 ]

"1

+ Tt o,oV,,o+ Vo,oU,,o R_ R_ (uo,,+V,,o) + ,,o,oUo,o_,,

Ay2 " Ax2 "v- -_-(Vo,2Uo,o+ Uo,2Vo,o- U,,oUo,,)+ -q--( 2,oUo,o+ U2,oVo,o+ V,.oU,,o)

Ax [Uo,oV,,o+ Vo,oU,,o (_2,o- Vo,_)] (Uo,,+ V,,o)+ Vo,o_,o,o = 0
2 ReL ReL i+l,j

Equations (4.7)-(4.9)and (4.26), which are cross-stream interface conditions, become

+
Ax

i,j

J(_--_)M] =
Ax i,j+l

]- --_-U,,o + Vo,o
i,j

r Ax2 Ay2 ____Ul,o ] O- [ 1---_V_,o+ --_Vo,2 + + Vo,o =
i,j+l

(4.36)

"31- -_ [/30,0 U0,1 --

FAx 2

- [-_5-(U2,o_o,o

2 V°'° u°'l -- U°'° Ut'°

J( "" + Az =
i,j i,j+l

Ax Ay 2

q_-(U2,oVo,o + V2,oUo,o + U,,oV,,o) + _--(Uo,2Vo,o + ,,o,_Uo,o - _,o,,U,,o)

Uo,oU,,o R_(,,o,2-U.,o) R_ (Uo,_+_,l,O) + Uo,o_o,o,,J

Ay 2 .

+ V2,o,_o,o+ U,,oV_,o)+ -_-(Uo,_.o,o + Vo,2Uo,o - ,,o,,_,,,o)

2 ] 1 ]- R-Z(,,o,_-,.2,o) R_ (_o,,+,,,o) + ,,o.oVo,o,,J+,
= 0

25



/_X
+

i,j i,j+l

Ax2 __ 2
--i_---(2V,,oVo,o+ V_,o)+ (2Vo,,Vo,o + U,,o + po,,)

AY[uo,o Vl,o q- vo,o ul,o
2

lax2

- [-iE(_. v. Vo,o

2

ReL
(V,,o- Vo,,)] + po,o + 2 ]-g----U_,o + v 2

_/.._e L 0,0

Ay 2 . u 2
+ ,[o) + -U(2,o,_Vo,o + ,,o + po,_)

__ 2+ [Uo,oVl,o + Vo,oUl,o ReL 2 ](V,,o-Vo,,)] + po,o + --u_ + 2
_e L ,0 VO, 0

i,j+l

= 0

(4.38)

_(x_,ui+_;i,j) - e(xi,y#+a-_;_,j+l) =

Ay Ay
' _,,: t---_ u°'2 2-- _ tt°'l + U°'°]i,j+l

(4.39)

= 0

The boundary conditions at the lower and upper walls are

AY Ay Uo,o] i,1Uo,2 2 Uo,, + = 0

/_X2 /_y2 my Vo,o] i,112 v_,o + _ Vo,_ + } U_,o +

lAY Ay
---_- Uo,_ + --_- Uo,, + Uo,o]i,Nj = 0

Ax Ay 2 Ay
12 v2,o + --_----Vo,2 2-- -- Ul,o + Vo,o l i,Nj

= 0

= O.

(4.40)

(4.41)

(4.42)

(4.43)
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Conditions (4.20) - (4.25), which are derived from the differential form of the governing

equations, are given by

Ivy., + 2u2.0]i J = 0 (4.44)

[ ] = 0 (4.45)Ul'1%" 21)°'2 i,j

[ 2 ] = 0 (4.46)2(Uo,oU2, o -- '00,0/)0,2) %" U,, o "t- tto,, Vt,o i,j

Vo,oUo,_ - Uo,oVo,_].. = 0 (4.47)
J 1,3

2 ] = 02(Vo,oVo,2 - Uo,oU2,o %" Po,2) %"ul,o %"uo,_V_,o i,j
(4.48)

[ ] = 0 (4.49)
U°'° V2'° -- V°'° _12'° i,j

and the upstream and downstream boundary conditions are

Am Ax ] -[uilj = 0 (4.50)4 U2,o - --_u_,o %" uo,o 1j

,,x ]V_,o + Vo,o = 0 (4.51)1) 2,0
4 2 1 ,j

[po,o] u,j = p¢" (4.52)

Equations (4.30) - (4.52) are a coupled system of second-order polynomial equations

that take the form

F(X) = O. (4.53)

The unknowns P,,0, P0., and P0., may be eliminated using (4.31), (4.32) and (4.48), respec-

tively, so that there are a net 10 unknowns per cell that must be explicity solved for. The

total number of equations in the nonlinear system is 10 Ni Nj.

The Jacobian matrix associated with equation (4.53) is block tridiagonal, with block

sizes equal to 10 Nj. If the equations in (4.53) are arranged appropriately, the Jacobian

matrix has the structure shown in Figure 4. Assuming an initial solution iterate )_-0,

Newton's method for this system takes the following form:
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OF] ,, A"X ---- - F(X")g-E

where

(4.54)

J_7 n-{-1 = X n -Jc An-,_ (4.55)

The Jacobian matrix shown in Figure 4 has a highly diagonalized block structure.

Ninety per cent of the lower diagonal blocks, and 80% of the upper diagonal blocks, are

zero. In addition, there are no equations that span all three blocks in a block row of the

matrix. If pivoting is employed during the elimination process, the upper diagonal blocks

21 _-_v2 11 At2 where N IONj is the blockwill fill in, and the storage required is T6"" i-. i-6-- =

size. However, if the equations that are located entirely within the diagonal block are

pivoted separately from the equations that span two blocks, there will be no fill-in, and

the storage required is only a3 ar at2 3 N 2. In the former case, the iteration matrix is]--0 "'i'" 10

nearly block bi-diagonal. In the latter case, the iteration matrix is nearly block diagonal.

For both cases, the Jacobian matrix retains a highly diagonalized block structure during

the elimination process by virtue of the fact that none of the discrete equations span more

than two blocks.

The computational work required is significantly reduced in either case over the situa-

tion in which the elimination must be carried out completely in all of the blocks. Calcula-

tions performed on a Cray YMP have shown that, for the nearly block bi-diagonal iteration

matrix, the computational work required per iteration is reduced by about 47%. For the

nearly block diagonal iteration matrix, calculations have shown that the computational

work required is reduced by about 60%.
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V. Numerical Results

In this section numerical results are presented from calculations of developing chan-

nel flows with Reynolds numbers of 100, 1000, and 2000. Our concern here is not with

quantitative validation, but rather with demonstrating the overall features of the present

scheme. Validation will be considered in a future paper.

For plug flow inlet conditions, the incoming velocity profile may be arbitrarily speci-

fied. We consider for convenience velocity profiles of the form

u (v) = c( - (5.1)

As n increases, the inlet velocity profile approaches a top-hat shape. In this paper we take

n equal to 6. (See Figure 5.) Calculations with n values ranging from 4 to 10 have also

been performed but will not be presented in this paper. The constant C is chosen so that

the integrated mass flux at the inlet is equal to one.

One of the major goals of the present work is to demonstrate the feasibility of solv-

ing developing viscous flows on coarsely spaced uniform grids. To that end, numerous

calculations have been performed of developing channel flows on grids using from 4 to 12

cells per channel width. Our results indicate that as few as 6 cells across the channel

may be sufficient to resolve the developing boundary layer, depending on the Reynolds

number. For each Reynolds number considered, our approach was to repeatedly solve for

the developing flow on successively finer grids until the predicted boundary layer thickness

remained unchanged from the previous calculation. In the results that follow, we present

results from the two finest grids that were used for each Reynolds number. We should

point out that, due to symmetry, the number of independent cells to resolve the flow field

is half the number of cells per channel width.

The computational grids used in the present study are shown in Figures 6 - 9. In earl1

case the exit boundary is 11 channel heights downstream. Figures 10 - 12, 13 - 15, and 16 -

18 present results for Reynolds numbers of 100, 1000, and 2000, respectively. The predicted

streamwise velocity profile is shown at 1, 3, 5, and 11 channel heights downstream. Each

figure also shows the inlet velocity profile and the fully developed analytical solution.

Figures 10 - II clearly indicate that at a Reynolds number of I00, the flow becomes

fully developed in only a few channel heights downstream. At x = 5, the predicted stream-

wise velocity along the centerline differs from the fully developed solution by .35 %. At

x = 11, the predicted profile and the fully developed solution agree to a minimuln of 3

decimal places everywhere. Figure 12 combines the results from Figures 10 and 11. The

results show clearly that 6 cells per channel width are as adequate as 8 cells to resolve the

developing boundary layer. The CPU times required for these cases were 2.4 and 5.0 see-

onds, respectively, on a Cray YMP. The sohltions were converged to a maximum residual

error of 10 -4, starting from an initial guess of uniform flow.

At the higher Reynolds numbers of 1000 and 2000, the boundary layer is thinner

and develops much more slowly. Consequently, more than 6 cells per channel width are
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required to resolvethe developingflow. The numerical results in Figures 13 - 18 indicate
that 8 cells acrossthe channel are sufficient to resolvethe boundary layer at a Reynolds
number of 1000,and 10cells are sufficient at a Reynoldsnumber of 2000. The CPU times
ranged from 6.1 to 9.9 secondsfor the Reynolds number 1000 results, and from 11.1 to

16.6 seconds for the Reynolds number 2000 results.

The numerical results in Figures 13 - 18 also show the occurence of non-physical

oscillations in the velocity profile. These occur as a lingering effect of the singularity at

the channel inlet. At the lower Reynolds number of 100, the naturally occuring viscocity is

sufficient to quickly damp out the effects of the singularity. However, at the higher Reynolds

numbers, this is no longer the case, and the oscillations persist further downstream. We

should point out that a more physically realistic inlet velocity profile would reduce the

strength of the singularity and the resulting non-physical oscillations.

Conclusion

In this paper we have presented a new flux conserving numerical scheme for solving

the two-dimensional, steady Navier-Stokes equations. There are numerous advantages to

the scheme we have developed. First, fluxes of mass, momentum, and energy are conserved

on every cell and every union of cells in a computational mesh which has been used to

discretize a flow field. Second, fluxes are balanced at cell interfaces without the use of

interpolation, extrapolation, or flux limiters. Third, the discrete solution obtained on each

cell is a functional solution of both the integral and differential form of the Navier-Stokes

equations. Fourth, the present scheme is highly localized, and concentrates most of the

information on a local cell. This results in a nearly block diagonal Jacobian matrix with

minimal solution times and storage requirements. Fifth, as shown above, the present

approach offers the potential to solve developing viscous flows on coarsely spaced, uniform

grids. Finally, the approach we have developed provides a unified treatment of the discrete

dependent variables and their derivatives. All are treated as unknowns together to be

solved for through simulating local and global flux conservation - i.e., physics.
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Appendix

Analytical Solution for Fully Developed Flow

The analytical solution for the fully developed velocity is obtained by solving equation

(2.2). For flow in an infinitely long straight channel, this equation reduces to

d2u - ReL dp (A.1)
dy 2 -_x

where _ is the nondimensional constant pressure gradient, and u must satisfy the bound-

ary conditions

u(-}) = 0 (A.2a)

(A.2b)u(-_) = o.

The solution to equation (A.1) and boundary conditions (A.2) is

R_L @ (V__ 14).u(y)-- -2 dx (A.3)

For unit nondimensional velocity at the channel inlet, conservation of mass requires that

dp 12
- (A.4)

dx ReL "

The analytical solution for the nondimensional fully developed velocity is thus given by

u(v) = - 6(v_ - _). (A.5)

When the flow is fully developed, equations (4.30) - (4.52) reduce to a linear set of

equations which can be solved analytically. For the fully developed case, the discrete

equations reduce to

[ 2 ] = 0 for j = 1 ...,Nj (A.6)
Pl,o Re L u°'_ i,j

Ay Ay u0,0] i,j L--_- u0,2 2 u0,, + = 0 (A.7)-y-u0._ + _ u0,, + _ [_xy_ _ _x__v u0,0],,_+,

for j = 1,...,Nj - 1
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for j = 1,...,Nj - 1

Ay Ay ] = 0 (A.9)Tu°'_ 2 u0.1 + u0,o i,I

lAY Ay
--_--Uo,, + _ uo,1 + Uo,o]i,N i = 0 (A.IO)

Equation (A.6), which is the x-momentum flux conservation constraint, immediately

determines the value of uo,_ on each solution element. We have

] ReL ReL dp ReL 12UO,2 . -- Pl,o --i,j 2 2 dz 2 ( ReL ) = -- 6 (A.11)

since Pt,0 is the known pressure gradient dd--_.There are thus only two unknowns per solution

element, uo,1 and u0,0. If we consider the special case of only one solution element for the

entire channel width so that Nj = 1, equations (A.9) and (A.10) form a system of two

equations in the two unknowns u0.1 and u0,0. The solution of this system is given by

Uo,, = 0, Uo.o = _. (A.12)

Thus,

u(y) = -6(y 2 - ¼) = u(y) (A.13)

so that the analytical solution is recovered.

In general, it can be shown that the solution to the system of discrete equations

uo,2].. = -- 6
J 1)3

(A.6) - (A.10) is given by

[ 00] --
i,j

(A.14)

so that

(A.15)

(A.16)

u(y;i,j) = -6(y-yj)a - 12yj(y-yj) - 6(y_ - ¼) (A.17)

where

= _ ½ + (j - ])Ay.

The analytical solution is thus recovered on each solution element.

(A.18)
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A re-examination of equation (A.6) indicates that

2 [u0,2] =ReL dp (A.19)
i,j dx"

Since

we have

= (A.20)Oeu/Oy 2 2 [Uo,,] i,j

dp (A.21)O_u/Oy 2 = ReL -_z

which corresponds exactly to equation (A.1). The x-momentum flux conservation con-

straint for the discrete solution thus reproduces the governing differential equation for

fully developed channel flow.
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